A Strong Entropy Power Inequality

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy-power inequality for weighted entropy

We analyse an analog of the entropy-power inequality for the weighted entropy. In particular, we discuss connections with weighted Lieb‘s splitting inequality and an Gaussian additive noise formula. Examples and counterexamples are given, for some classes of probability distributions.

متن کامل

Entropy Power Inequality for the Rényi Entropy

The classical entropy power inequality is extended to the Rényi entropy. We also discuss the question of the existence of the entropy for sums of independent random variables.

متن کامل

Multimode quantum entropy power inequality

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. The quantum version of a fundamental entropic data-processing inequality is presented. It establishes a lower bound...

متن کامل

Variants of Entropy Power Inequality

An extension of the entropy power inequality to the form N r (X +Y ) ≥ N r (X) +N r (Y ) with arbitrary independent summands X and Y in R is obtained for the Rényi entropy and powers α ≥ (r + 1)/2.

متن کامل

Rényi entropy power inequality and a reverse

This paper is twofold. In the first part, we derive an improvement of the Rényi Entropy Power Inequality (EPI) recently obtained by Bobkov and Marsiglietti [10]. The proof largely follows Lieb’s [22] approach of employing Young’s inequality. In the second part, we prove a reverse Rényi EPI, that verifies a conjecture proposed in [4, 23] in two cases. Connections with various p-th mean bodies in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2018

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2017.2779745